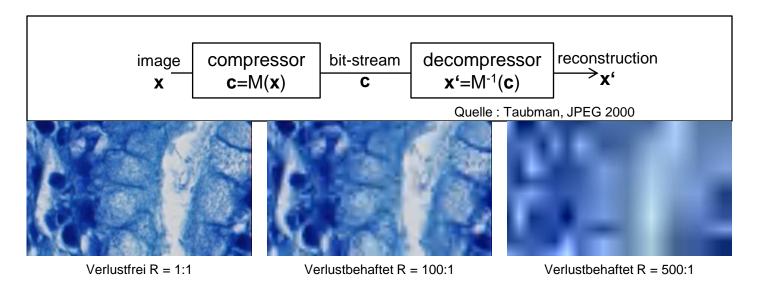

Whole Slide Imaging (WSI) Methoden der digitalen Routinepathologie

R. Zwönitzer, T. Kalinski, H. Hofmann, A. Roessner

93. Jahrestagung der Deutschen Gesellschaft für Pathologie 4. Juni 2009


Übersicht Digitale Pathologie (DP) – Komponenten & Schnittstellen

Veröffentlicht 2007: Computer methods and programs in biomedicine. Zwönitzer, Kalinski, et.al. Digital pathology: DICOM-conform draft, testbed and first results

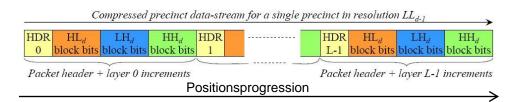
Grundlagen der verlustbehafteten Bildkompression

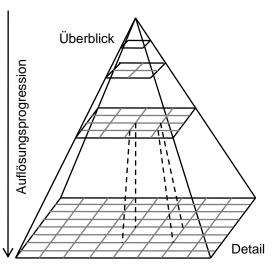
- WSI erfordert verlustbehaftete Kompression der Bilddaten.
- Geringere Qualität Q durch Informationsverlust wenn x ≠ x⁶
- Quantitativer Qualitätsverlust ist messbar (Differenz zum Original).
- Untersuchung des qualitativen Informationsverlustes nur klinisch.

JPEG2000

JPEG

Bilder : © Foos, Moui, 1999 Clunie, Dicom Compression, 2002


- Diskrete Wavelet Transformation (DWT)
 - Unterteilung frequenz- und auflösungsbasiert
- 1 bis 16 Bit pro Komponente
- Verlustfrei gleicher Algorithmus
- Progression integriert
- Praktisch keine Limits


- Diskrete Cosinus Transformation (DCT)
 - → Unterteilung räumlich in 8x8 Blöcke
- 8 oder 12 Bit pro Komponente
- Verlustfrei anderer Algorithmus
- Progression als Sonderfälle
- Maximal 64k Spalten / Zeilen
- Bildqualität 20-40% besser als bei JPEG
 - → Besonders bei sehr hoher Kompressionsrate
- Hoher Ressourcenbedarf für die Kompression
 - → Bis zu 10x gegenüber JPEG bei sehr großen Bildern
- JPEG LS/NLS leider lizenzrechtlich "verbrannt"

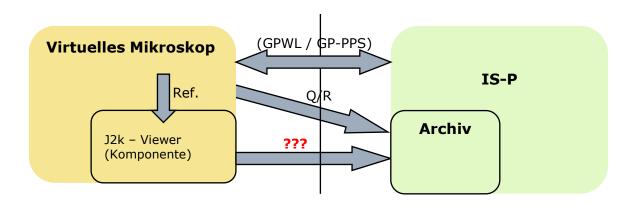
Warum JPEG2000?

- Auflösungsprogression
- Positionsprogression
- Qualitätsprogression
- Farbprogression
- Weitere Merkmale
 - → Selbstenthaltung
 - → Übertragungsprotokoll JPIP (Part9)
 - → Multidocument

Bilder: © Taubman, Prandolini, 2003 Architecture, Philosophy and Performance of JPIP

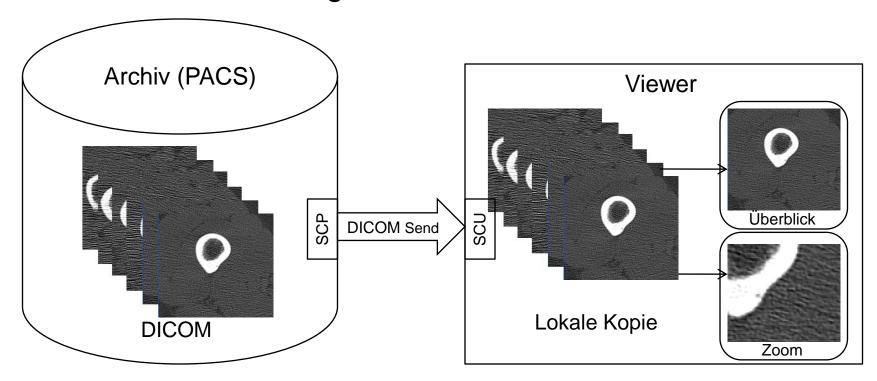
Methode Architektur Client

Architektur virtuelles Mikroskop


Präsentation

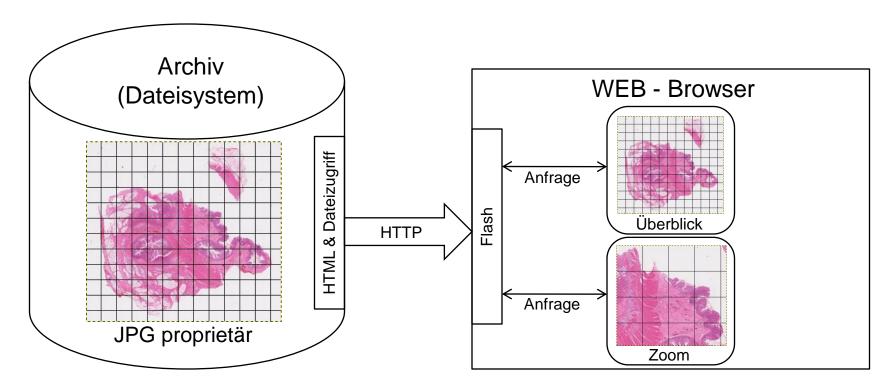
- → Fallübersicht
- → Bilddarstellung
- → Zusatzinformationen

Storage: DICOM Send der erzeugten Annotationen oder Reports an das Archiv.

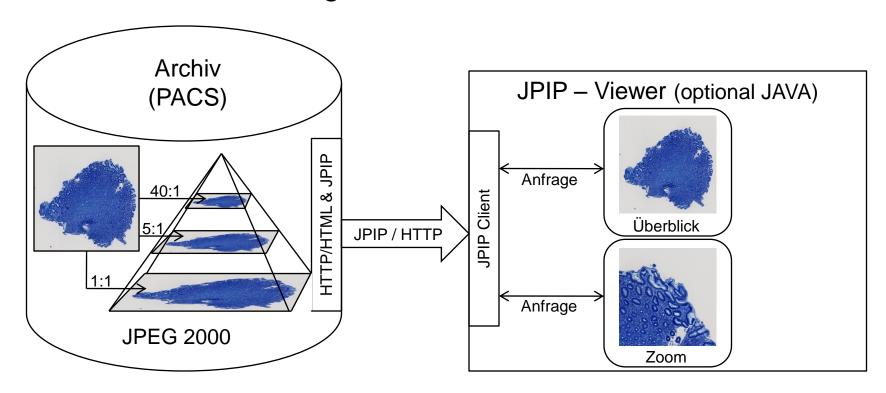

Aufgaben

- → Auftragskommunikation
- Query / Retrieve in JPIP Transfer Syntax an Archiv
- Streamingfähige Bilddarstellung als Komponente

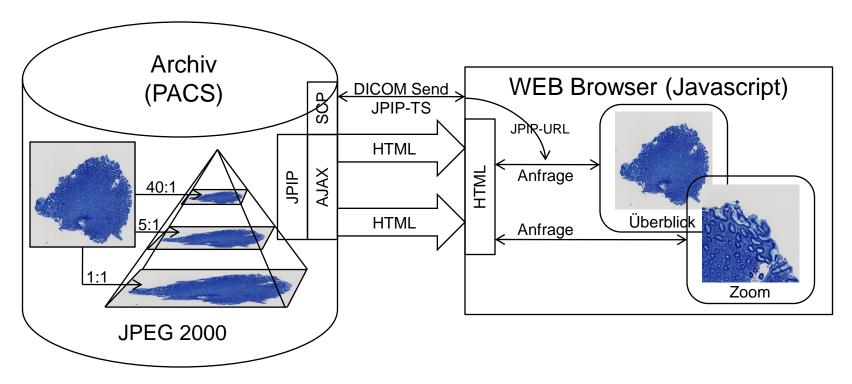
→ Welcher Übertragungsweg ist für WSI geeignet?


Bildverteilung DICOM (store and forward)

- Weite Verbreitung in der Medizin
- Auf beiden Seiten ist DICOM Software nötig.
- Anzeige erst nach Übertragung des kompletten Bildes
- → Ungeeignet für WSI in der Digitalen Pathologie


Bildverteilung "Zerlegung" (z.B. silverZoom , Zoomify)

- Bildzerlegung und -verteilung erzeugt hohe Ressourcenlast
- Verteilungsprobleme durch aktiven Teil im Browser (z.B. Flash)
- Datenformat und Protokoll proprietär, keine Integration in DICOM
- → Ungeeignet für die Archivierung großer Datenmengen


Bildverteilung JPEG2000 / JPIP (streaming)

- Format JPEG2000 & JPIP sind standardisiert und in DICOM integriert.
- Kompression aufwändig, Bildberechnung im Client.
- Verteilungsprobleme durch aktiven Teil im Browser (JPIP Client)
- → Für Intranet geeignet, Probleme im Internet

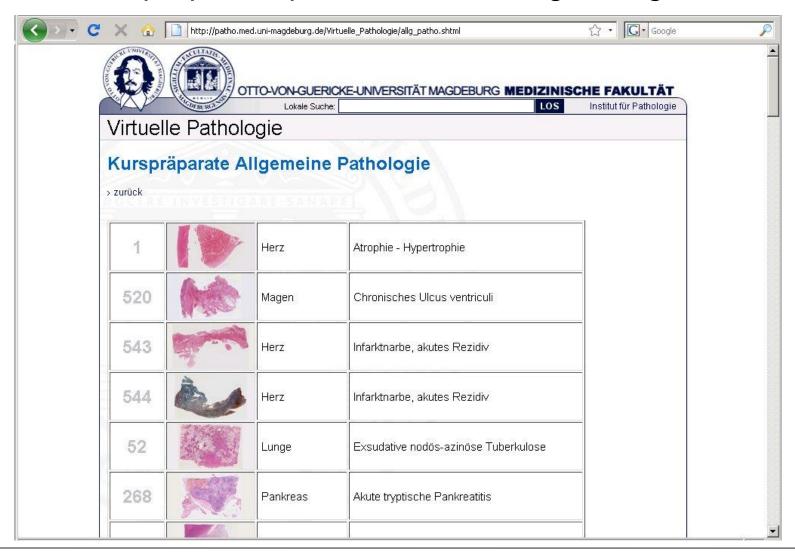
Bildverteilung JPEG2000 / JPIP (AJAX)

- Berechnung der Bildteile auf Anfrage im Server.
- Zugriff auf JPEG2000 durch JPIP oder direkt.
- Kein JPIP Client nötig, Parallelbetrieb durch einheitliches Format.
- → Für Intranet und Internet geeignet, jedoch höhere Serverlast

Bildverteilung JPEG2000 / JPIP / AJAX

Ressourcenbedarf Zoomify und JPEG2000 (n=427)

	Zoomify			Jpeg2000		
Directory	Anzahl Files	Directories	GB	Files	Directories	GB
Histo Allg Patho	13.039.000	153.149	121	71	0	89
Histo Spez Patho	7.880.209	92.576	68	48	0	54
Histo Goe Patho	32.379.107	382.007	239	273	0	230
Histo Lymph Patho	8.489.158	99.839	80	89	0	72
Summe	61.787.474	727.571	508	481	0	445


→ Material 427 Präparate, ca. 10TB unkomprimiert

→ Software W2k3 X32, Zoomify Droplet, JPEG2000 Kakadu V6.0

→ Hardware HP-Proliant DL380 G5, Xeon 4-core 2.33GHz, 3GB RAM

Lehrpräparate patho.med.uni-magdeburg.de

Ressourcenbedarf JPEG2000

		JPEG2000			
Bildarten	Präparate [n]	Größe [GB]	Maximum [GB]		
Allgemeine Pathologie	70	89,1	2,8		
Spezielle Pathologie	48	53,7	2,4		
Makroskopie	83	7,2	0,4		
Biopsie-Studien	521	963	15,2		
Histologie Sonstiges	609	1083	2,9		
Summe	1331	2196			

→ Material 1331 Präparate, ca. 62TB unkomprimiert

→ Software W2k3 X64, JPEG2000 Kakadu V6.0

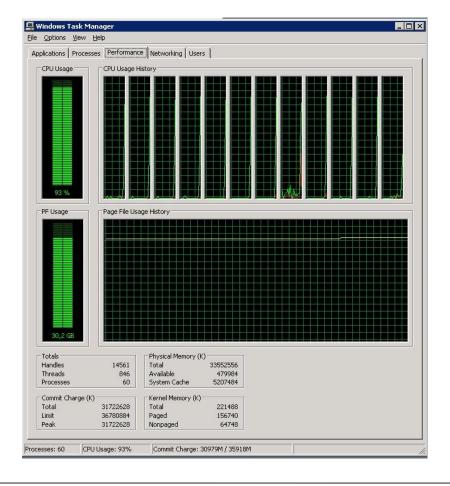
→ Hardware HP-Proliant DL580 G3, Xeon 12-core 2.66GHz, 32GB RAM

Zusammenfassung

Anforderungen der Routinediagnostik

- → Effiziente verlustbehaftete Kompression mit integrierter Progression
- → Auf Streaming basierende Bildverteilung aus dem Archiv
- → Integration in DICOM
- → Kompatibilität mit Voraufnahmen und zusätzlichen Dokumenten

JPEG2000


- → JPEG2000 / JPIP mit Auflösungsprogression ist geeignet und in DICOM integriert.
- → Bildverteilung JPIP / AJAX erfüllt medizinische und technische Anforderungen.
- → Alle Bildarten können verarbeitet werden.
- → Ressourcenbedarf der Kompression ist sehr hoch aber kalkulierbar.

Noch zu lösen:

- → Weitere Optimierung der Kompressionszeiten
- → Medico-legale Untersuchungen zur Kompressionsrate und Qualität
- → Farbeichung in Medizin einzigartig

Ausblick

Vielen Dank

für die Aufmerksamkeit

